

Revisão 1.1 Janeiro/2019

1. Características

A comunicação baseada no protocolo MODBUS possibilita a conexão com até 247 instrumentos em uma rede RS-485.

Protocolo Disponível: MODBUS- RTU

 RTU (Remote Terminal Unit): Modo de transmissão no qual os dados são transmitidos como caracteres de 8 bits.

A seguir, formatos e velocidades disponíveis para transmissão de dados.

FORMATO	TOTAL DE BITS	OBS
8N1 (1 start bit, 8 bits de dados, 1 stop bit)	10	-
8N2 (1 start bit, 8 bits de dados, 2 stop bits)	11	-
8E1 (1 start bit, 8 bits de dados, 1 bit de paridade, 1 stop bit)	11	Paridade par
801 (1 start bit, 8 bits de dados, 1 bit de paridade, 1 stop bit)	11	Paridade ímpar

VELOCIDADE	
9600 bps	

O usuário pode configurar os parâmetros de comunicação serial através da IHM ou via interface serial.

2. Detalhes do Protocolo Modbus

Funções MODBUS:

As funções do protocolo Modbus implementadas para o Ikron 03 são:

•	Read Holding Register	(0x03H)
•	Read Input Register	(0x04H)
•	Force Single Coil*	(0x05H)
•	Preset Single Register*	(0x06H)
•	Read Exception Status	(0x07H)
•	Preset Multiple Register*	(0x10H)
•	Report Slave ID	(0x11H)

^{*} Broadcast - funções que podem ser endereçadas para todos os slaves (endereço 0)

Funções ESPECIAIS:

•	Config Address	(00/42H)
•	Read Address	(00/71H)
•	Read Partidas	(00/75H)
•	Report Slave Id Kron	(00/76H)

3. READ HOLDING REGISTERS (0x03H)

Podem ser lidos via função "Read Holding Register (3)" e escritos via funções "Preset Single Register (6)" ou "Preset Multiple Register (16)". Podem ser lidos ou escritos no máximo 8 registros para cada requisição.

Revisão 1.1 Janeiro/2019

HOLDING REGISTERS – BLOCO PADRÃO:

São os registros de configuração do instrumento, disponíveis para alteração de constantes e programações em geral.

ENDEREÇO	DESCRIÇÃO	DESCRIÇÃO FORMATO	
40.001, 40.002	ТР	IEEE 32-bit fp (F2,F1), (F0,EXP)	0,01 – 9999,99
40.003, 40.004	тс	IEEE 32-bit fp (F2,F1), (F0,EXP)	0,01 – 9999,99
40.005	KE (Quantidade de pulsos por kWh/kVarh)	Unsigned int 16-bit	430 - 3000
40.006	TL e TI	Unsigned int 8-bit (MSB) / Unsigned int 8-bit (LSB)	00 – 80 / 00 – 60
40.007	Configurações	Uso Futuro	

HOLDING REGISTERS – BLOCO ESPECIAL:

Utilizado para configurar a sequência do ponto flutuante utilizada pelo instrumento para envio dos valores de medição presentes nos "Input Registers". Estes registro estão no formato IEEE 32-bit fp, com padrão de fornecimento na sequência F2, F1, F0 e EXP (3,2,1 e 0).

ENDEREÇO	DESCRIÇÃO	FORMATO	RANGE (MIN – MÁX)
42.901	Seqüência do Ponto	Unsigned int 8-bit (LSB) / Unsigned int 8-bit	0 – 65535
42.501	Flutuante	(MSB)	0 03333

Exemplos:

42.901 (MSB, LSB)	DISPOSIÇÃO	COMENTÁRIO
0x32, 0x10	F2, F1, F0, EXP	Padrão KRON
0x23, 0x01	F1, F2, EXP, F0	Float
0x01, 0x23	EXP, F0, F1, F2	Float inverse

4. READ INPUT REGISTERS (0x04)

Grandezas Elétricas: podem ser lidos até 66 registros de uma única vez (de 30001 a 30066).

ENDEREÇO	REG.	DESCRIÇÃO	FORMATO
30.001, 30.002	NS	Número de Série	Unsigned int 32-bit (MSB,LSB)
30.003, 30.004	U0	Tensão Trifásica (V)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.005, 30.006	U12	Tensão Fase/Fase (A-B)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.007, 30.008	U23	Tensão Fase/Fase (B-C)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.009, 30.010	U31	Tensão Fase/Fase (C-A)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.011, 30.012	U1	Tensão Linha 1 (V)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.013, 30.014	U2	Tensão Linha 2 (V)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.015, 30.016	U3	Tensão Linha 3 (V)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.017, 30.018	10	Corrente Trifásica (A)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.019, 30.020	Reservado	Uso futuro	
30.021, 30.022	l1	Corrente Linha 1 (A)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.023, 30.024	12	Corrente Linha 2 (A)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.025, 30.026	13	Corrente Linha 3 (A)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.027, 30.028	Freq - FA	Freqüência Linha 1	IEEE 32-bit fp (F2,F1,F0,EXP)
30.029, 30.030	Reservado	Uso futuro	
30.031, 30.032	Reservado	Uso futuro	
30.033, 30.034	Reservado	Uso futuro	

Revisão 1.1 Janeiro/2019

ENDEREÇO	REG.	DESCRIÇÃO	FORMATO
30.035, 30.036	P0	Potência Ativa Trifásica (W)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.037, 30.038	P1	Potência Ativa Linha 1 (W)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.039, 30.040	P2	Potência Ativa Linha 2 (W)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.041, 30.042	P3	Potência Ativa Linha 3 (W)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.043, 30.044	Q0	Potência Reativa Trifásica (VAr)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.045, 30.046	Q1	Potência Reativa Linha 1 (VAr)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.047, 30.048	Q2	Potência Reativa Linha 2 (VAr)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.049, 30.050	Q3	Potência Reativa Linha 3 (VAr)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.051, 30.052	S0	Potência Aparente Trifásica (VA)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.053, 30.054	S1	Potência Aparente Linha 1 (VA)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.055, 30.056	S2	Potência Aparente Linha 2 (VA)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.057, 30.058	S3	Potência Aparente Linha 3 (VA)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.059, 30.060	FP0	Fator de Potência Trifásico	IEEE 32-bit fp (F2,F1,F0,EXP)
30.061, 30.062	FP1	Fator de Potência Linha 1	IEEE 32-bit fp (F2,F1,F0,EXP)
30.063, 30.064	FP2	Fator de Potência Linha 2	IEEE 32-bit fp (F2,F1,F0,EXP)
30.065, 30.066	FP3	Fator de Potência Linha 3	IEEE 32-bit fp (F2,F1,F0,EXP)

Constante de pulsos – Quantidade de pulsos por kWh/kVarh

ENDEREÇO	REG.	DESCRIÇÃO	FORMATO
30.098, 30.099	Pen (KE)	Quantidade de pulsos por kWh/Kvarh	IEEE 32-bit fp (F2,F1,F0,EXP)

Grandezas Elétricas: grupo de mínimos e máximos.

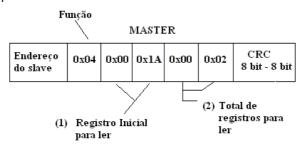
VALOR MÍNIMO	VALOR MÁXIMO	REG.	DESCRIÇÃO
31.003, 31.004	32.003, 32.004	U0	Tensão Trifásica (V)
31.005, 31.006	32.005, 32.006	U12	Tensão Fase/Fase (A-B)
31.007, 31.008	32.007, 32.008	U23	Tensão Fase/Fase (B-C)
31.009, 31.010	32.009, 32.010	U31	Tensão Fase/Fase (C-A)
31.011, 31.012	32.011, 32.012	U1	Tensão Linha 1 (V)
31.013, 31.014	32.013, 32.014	U2	Tensão Linha 2 (V)
31.015, 31.016	32.015, 32.016	U3	Tensão Linha 3 (V)
31.017, 31.018	32.017, 32.018	10	Corrente Trifásica (A)
31.019, 31.020	32.019, 32.020	Uso futuro	
31.021, 31.022	32.021, 32.022	I1	Corrente Linha 1 (A)
31.023, 31.024	32.023, 32.024	12	Corrente Linha 2 (A)
31.025, 31.026	32.025, 32.026	13	Corrente Linha 3 (A)
31.027, 31.028	32.027, 32.028	Freq - FA	Freqüência Linha 1
31.029, 31.030	32.029, 32.030	Uso futuro	
31.031, 31.032	32.031, 32.032	Uso futuro	
31.033, 31.034	32.033, 32.034	Uso futuro	
31.035, 31.036	32.035, 32.036	P0	Potência Ativa Trifásica (W)
31.037, 31.038	32.037, 32.038	P1	Potência Ativa Linha 1 (W)
31.039, 31.040	32.039, 32.040	P2	Potência Ativa Linha 2 (W)
31.041, 31.042	32.041, 32.042	P3	Potência Ativa Linha 3 (W)
31.043, 31.044	32.043, 32.044	Q0	Potência Reativa Trifásica (VAr)
31.045, 31.046	32.045, 32.046	Q1	Potência Reativa Linha 1 (VAr)
31.047, 31.048	32.047, 32.048	Q2	Potência Reativa Linha 2 (VAr)

Revisão 1.1 Janeiro/2019

VALOR MÍNIMO	VALOR MÁXIMO	REG.	DESCRIÇÃO
31.049, 31.050	32.049, 32.050	Q3	Potência Reativa Linha 3 (VAr)
31.051, 31.052	32.051, 32.052	S0	Potência Aparente Trifásica (VA)
31.053, 31.054	32.053, 32.054	S1	Potência Aparente Linha 1 (VA)
31.055, 31.056	32.055, 32.056	S2	Potência Aparente Linha 2 (VA)
31.057, 31.058	32.057, 32.058	S3	Potência Aparente Linha 3 (VA)
31.059, 31.060	32.059, 32.060	FP0	Fator de Potência Trifásico
31.061, 31.062	32.061, 32.062	FP1	Fator de Potência Linha 1
31.063, 31.064	32.063, 32.064	FP2	Fator de Potência Linha 2
31.065, 31.066	32.065, 32.066	FP3	Fator de Potência Linha 3

Energias e Demandas.

ENDEREÇO	REG.	DESCRIÇÃO	FORMATO		
30.201, 30.202	EA+	Energia Ativa Positiva (KWh)	IEEE 32-bit fp (F2,F1,F0,EXP)		
30.203, 30.204	ER+	Energia Reativa Positiva(KVArh)	IEEE 32-bit fp (F2,F1,F0,EXP)		
30.205, 30.206	EA-	Energia Ativa Negativa (KWh)	IEEE 32-bit fp (F2,F1,F0,EXP)		
30.207, 30.208	ER-	Energia Reativa Negativa (KQh)	IEEE 32-bit fp (F2,F1,F0,EXP)		
30.209, 30.210	MDA	Máx. Demanda Ativa (KW)	IEEE 32-bit fp (F2,F1,F0,EXP)		
30.211, 30.212	DA	Demanda Ativa (KW)	IEEE 32-bit fp (F2,F1,F0,EXP)		
30.213, 30.214	MDS	Máx. Demanda Aparente (KVA)	IEEE 32-bit fp (F2,F1,F0,EXP)		
30.215, 30.216	DS	Demanda Aparente (KVA)	IEEE 32-bit fp (F2,F1,F0,EXP)		


6.6. Códigos de Erro.

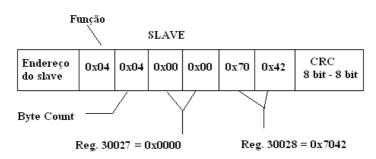
ENDEREÇO REG.		DESCRIÇÃO	FORMATO	
33.901	Erro	Código de Erro*	Int 16-bit (MSB,LSB)	

^{*} Para maiores detalhes veja os itens 7 e 8.

Exemplo de leitura de input register:

Os frames desta função para master e slave são:

(1) O registro inicial para ler é obtido removendo o indicativo (número 3) e subtraindo o resultado por 1. No exemplo, o registro 30027 (decimal) é transmitido como 0x001A (hexadecimal):

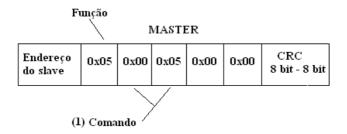

30027 → 00027 → 00026 → 0x001A hexadecimal.

(2) Total de registros que podem ser lidos.

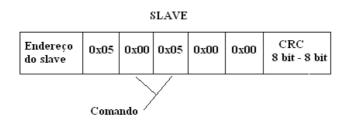
A resposta do Slave:

Revisão 1.1 Janeiro/2019

O registro byte count é igual ao total de registros a serem lidos vezes 2, pois cada registro possui 2 bytes.


No exemplo acima o master pediu uma leitura dos registros que contém a frequência da fase A (30027 e 30028) e obteve como resposta o valor 0x00007042 (IEEE 32-bit floating point). Convertendo esse valor para decimal temos que a Freqüência medida pelo canal A é 60 Hz.

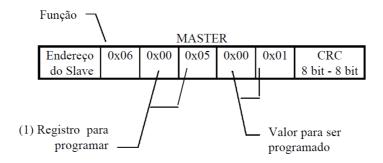
5. FORCE SINGLE COIL (0x05)


Esta função permite executar os seguintes comandos no Ikron 03:

COMANDO	DESCRIÇÃO	
001	Reseta DEMANDA ATIVA	
002	Reseta DEMANDA APARENTE	
003	Reseta MÁXIMA DEMANDA ATIVA	
004	Reseta MÁXIMA DEMANDA APARENTE	
005	Reseta ENERGIA ATIVA POSITIVA	
006	Reinicializa Dispositivo	
007	Sincroniza Cálculo da DEMANDA	
040	Reseta todas as ENERGIAS e DEMANDAS	
050	Reseta ENERGIA REATIVA POSITIVA	
051	Reseta ENERGIA ATIVA NEGATIVA	
052	Reseta ENERGIA REATIVA NEGATIVA	
053	Reseta Mínimos e Máximos	

Exemplo: Usar o comando 06 (reinicialização de dispositivo).

- (1) Este registro é obtido subtraindo 1 do comando desejado. No exemplo o comando 006 é enviado como 0x0005.
- O Slave retorna uma cópia do frame recebido. Para o exemplo acima:



Revisão 1.1 Janeiro/2019


6. PRESET SINGLE REGISTER (0x06)

Esta função é utilizada para programar um único holding register (registros de configuração do instrumento). Abaixo, exemplo de programação do registro 40006 (TI/TL). Os frames desta função para dispositivos master e slave são:

MASTER

(1) O registro para programar é obtido removendo o indicativo (número 4) e subtraindo o resultado por 1. No exemplo, o registro 40006 (decimal) é transmitido como 0x0005 (hexadecimal): 40006 = 0006 = (0006 - 1) = 0005 = 0x0005 hexadecimal.

Para esta função o slave retorna uma cópia do comando recebido. No exemplo anterior o master programou o registro 40006 com o valor 00 01, tipo de ligação "00 – Três elementos, 4fios" e tempo de integração para cálculo de demanda de 1 minuto.

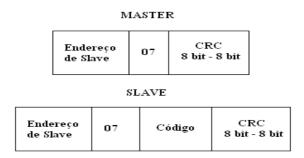
7. CÓDIGO DE ERRO

O código de erro permite verificar a integridade do aparelho. Para obter toda a informação de códigos de erro, utilize a função "Read Input Register (0x04)". Os códigos ocupam 1 registro de 16 bits, 33901. A seguir, descrição dos conteúdos dos bytes menos significativos (LSB) e mais significativos (MSB).

LSB

CÓDIGO (decimal)	DESCRIÇÃO
00	Funcionamento Correto.
01	Inversão de Fase ou Falta de Fase.
02	Reservado.
08	Reservado.
16	Reservado.
128	Reservado.

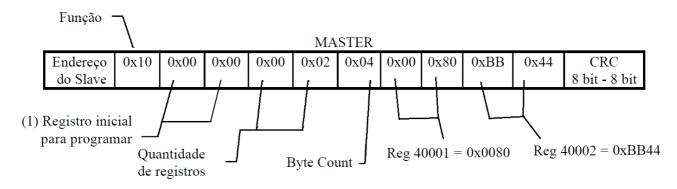
Revisão 1.1 Janeiro/2019


MSB

CÓDIGO (decimal)	DESCRIÇÃO	
00	Reservado.	
01	Reservado.	
02	Reservado.	
08	Reservado.	

8. READ EXCEPTION STATUS (0x07)

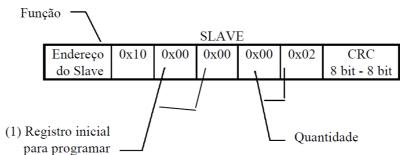
Utilizando esta função é possível consultar códigos de erro para o instrumento de modo direto. As informações retornadas são as mesmas presentes nos bytes menos significativos do registro 33901.


Os frames desta função para o master e o slave são:

9. PRESET MULTIPLE REGISTER (0x10)

Esta função é utilizada para programar múltiplos holding registers. Exemplificando, a programação da constante TC utilizaria esta função, pois o parâmetro ocupa mais de um registro. Abaixo, exemplo de programação dos registros 40001 e 40002 (TP). Os frames para dispositivos master e slave são:

MASTER


(1) O registro para programar é obtido removendo o indicativo (número 4) e subtraindo o resultado por 1. No exemplo, o registro 40001 (decimal) é transmitido como 0x0000 (hexadecimal):

 $40001 \rightarrow 0001 \rightarrow (0001 - 1) \rightarrow 0000 \rightarrow 0x0000$ hexadecimal. Na sequência, é necessário informar a quantidade de registros que serão programados e também o número de bytes equivalente. Os 4 bytes posteriores são preenchidos com o valor de interesse, codificado em ponto flutuante.

Revisão 1.1 Janeiro/2019

SLAVE

No exemplo acima o **master** programou os registros referentes ao TP (40001 e 40002) como 1500 (IEEE 32-bit float pointing = 0x0080BB44).

Atenção: O frame transmitido pelo master não deve exceder 29 bytes.

10. REPORT SLAVE ID (17)

Esta função permite identificar um modelo de medidor na rede, através de um código conhecido. Abaixo frames de mestre e escravo:

MASTER					
Slave	0x11 CRC				
Address		8 bit - 8 bit			

SLAVE

Endereço	0x11	Byte	CÓDIGO	ON /	0x18	XX	CRC
do Slave		Count		OFF			

Onde:

Byte Count = sempre 0x04

Código = Código do Dispositivo, para o Ikron 03 o valor é 0xF0.

ON/OFF = Versão Especial = Para modelo padrão, retorna **FF**.

"18" = Versão de Firmware = O número 18 representa versão 1.8 de firmware.

XX = Reservado

11. CONFIG ADDRESS (0/0X42)

Esta função permite configuração do endereço Modbus de um dispositivo, utilizando seu número de série como referência. Os endereços podem ser configurados de 1 a 247, sendo que cada peça deve assumir um valor exclusivo, ou seja, não devem existir endereços repetidos em uma rede RS-485.

Antes de realizar a modificação, pode-se utilizar a função "7" para identificar se o endereço que se deseja programar já está presente na rede. Para isso, na composição do frame da função "7", deve-se inserir o valor de interesse. Se não houver resposta, é sinal que o endereço escolhido não está sendo utilizado e pode ser configurado.

A seguir, conceito e exemplo de utilização:

MASTER

TALLS TELL						
0x00	0x42	Número de Série do Dispositivo	Novo Endereço	CRC	l	
		8 bit - 8 bit - 8 bit - 8 bit	8 bit	8 bit - 8 bit	ı	

Revisão 1.1 Janeiro/2019

No exemplo abaixo, a peça possui número de série 21000 e foi configurada com endereço "100".

MASTER

ı	0x00	0x42	0x00 0x00 0x52 0x08	0x64	CRC

O uso desta função não gera frame de resposta.