

Revisão 1.1 Fevereiro/2019

1. Características

A comunicação baseada no protocolo MODBUS possibilita a conexão com até 247 instrumentos em uma rede RS-485.

 Protocolo Disponível: MODBUS- RTU, onde RTU (Remote Terminal Unit) é um modo de transmissão no qual os dados são transmitidos como caracteres de 8 bits.

A seguir, formatos e velocidades disponíveis para transmissão de dados.

FORMATO	TOTAL DE BITS	OBS
8N1 (1 start bit, 8 bits de dados, 1 stop bit)	10	-
8N2 (1 start bit, 8 bits de dados, 2 stop bits)	11	-
8E1 (1 start bit, 8 bits de dados, 1 bit de paridade, 1 stop bit)	11	Paridade par
801 (1 start bit, 8 bits de dados, 1 bit de paridade, 1 stop bit)	11	Paridade ímpar

VELOCIDADE
1200 bps
2400 bps
4800 bps
9600 bps

O usuário pode configurar formato e velocidade somente pela saída serial RS-485, alterando o conteúdo do registro 40007 (função 4 – Read Holding Register).

Código do dispositivo: 0xE2

2. Detalhes do Protocolo Modbus

Funções MODBUS:

As funções do protocolo Modbus implementadas para o Ikron-01 D são:

•	Read Holding Register	(0x03H)
•	Read Input Register	(0x04H)
•	Force Single Coil*	(0x05H)
•	Preset Single Register*	(0x06H)
•	Read Exception Status	(0x07H)
•	Report Slave ID (17)	(0x11H)

^{*} Broadcast - funções que podem ser endereçadas para todos os slaves (endereço 0)

Funções ESPECIAIS:

•	Config Address	(00/42H)
•	Read Address	(00/71H)
•	Read Partidas	(00/75H)
•	Report Slave Id Kron	(00/76H)

Revisão 1.1 Fevereiro/2019

3. READ HOLDING REGISTERS (0x03H)

Podem ser lidos via função "Read Holding Register (3)" e escritos via funções "Preset Single Register (6)".

HOLDING REGISTERS - BLOCO PADRÃO:

São os registros de configuração do instrumento, disponíveis para alteração de constantes e programações em geral.

ENDEREÇO	DESCRIÇÃO	FORMATO	RANGE (MIN – MÁX)
40.006	ТІ	Unsigned int 8-bit (MSB)	00 – 60
40.007	Configurações	*	*

Através do Holding Register 40.007 (Configurações) é possível realizar as seguintes configurações:

D7	D6	D5	D4	D3	D2	D1	D0
----	----	----	----	----	----	----	----

BIT	DESCRIÇÃO	VALORES
D15D8	Reservado	0

BIT	DESCRIÇÃO	VALORES
D7	Reservado	0
D6	Reservado	0
D5	Reservado	0
D4-D3	Formato de dados	00 – 8N1 01 – 8N2 10 – 8E1 11 – 8O1
D2-D0	Baudrate	000 - 1200 001 - 2400 010 - 4800 011 - 9600

HOLDING REGISTERS – BLOCO ESPECIAL:

O registro 42901 permite modificar a sequência do ponto flutuante utilizada pelo instrumento para envio dos valores de medição presentes nos "Input Registers". Os registros de leitura estão no formato IEEE 32-bit fp, cuja sequência padrão de fábrica é F2, F1, F0 e EXP (3,2,1 e 0).

ENDEREÇO	DESCRIÇÃO	FORMATO	RANGE (MIN – MÁX)
42.901	Seqüência do Ponto	Unsigned int 8-bit (LSB) / Unsigned int 8-bit	0 – 65535
42.901	Flutuante	(MSB)	0 – 05555

Exemplos:

42.901 (MSB, LSB)	DISPOSIÇÃO	COMENTÁRIO
0x32, 0x10	F2, F1, F0, EXP	Padrão KRON
0x23, 0x01	F1, F2, EXP, F0	Float
0x01, 0x23	EXP, F0, F1, F2	Float inverse

Revisão 1.1 Fevereiro/2019

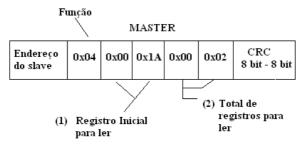
4. READ INPUT REGISTERS (0x04)

Grandezas Elétricas: podem ser lidos até 66 registros de uma única vez (de 30001 a 30066).

ENDEREÇO	REG.	DESCRIÇÃO	FORMATO
30.001, 30.002	NS	Número de Série	Unsigned int 32-bit (MSB,LSB)
30.003 a 30.010		Retorna com valor zero	IEEE 32-bit fp (F2,F1,F0,EXP)
30.011, 30.012	U1	Tensão Linha 1 (V)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.013 a 30.020		Retorna com valor zero	IEEE 32-bit fp (F2,F1,F0,EXP)
30.021, 30.022	l1	Corrente Linha 1 (A)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.023 a 30.026		Retorna com valor zero	IEEE 32-bit fp (F2,F1,F0,EXP)
30.027, 30.028	Freq - FA	Freqüência Linha 1	IEEE 32-bit fp (F2,F1,F0,EXP)
30.029 a 30.036		Retorna com valor zero	IEEE 32-bit fp (F2,F1,F0,EXP)
30.037, 30.038	P1	Potência Ativa Linha 1 (W)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.039 a 30.044		Retorna com valor zero	IEEE 32-bit fp (F2,F1,F0,EXP)
30.045, 30.046	Q1	Potência Reativa Linha 1 (VAr)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.047 a 30.052		Retorna com valor zero	IEEE 32-bit fp (F2,F1,F0,EXP)
30.053, 30.054	S1	Potência Aparente Linha 1 (VA)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.055 a 30.060		Retorna com valor zero	IEEE 32-bit fp (F2,F1,F0,EXP)
30.061, 30.062	FP1	Fator de Potência Linha 1	IEEE 32-bit fp (F2,F1,F0,EXP)
30.063 a 30.066		Retorna com valor zero	IEEE 32-bit fp (F2,F1,F0,EXP)

Energias e Demandas.

ENDEREÇO	REG.	DESCRIÇÃO	FORMATO		
30.201, 30.202	EA+	Energia Ativa Positiva (KWh)	IEEE 32-bit fp (F2,F1,F0,EXP)		
30.203, 30.204	ER+	Energia Reativa Positiva(KVArh)	IEEE 32-bit fp (F2,F1,F0,EXP)		
30.205, 30.206	EA-	Energia Ativa Negativa (KWh)	IEEE 32-bit fp (F2,F1,F0,EXP)		
30.207, 30.208	ER-	Energia Reativa Negativa (KQh)	IEEE 32-bit fp (F2,F1,F0,EXP)		
30.209, 30.210	MDA	Máx. Demanda Ativa (KW)	IEEE 32-bit fp (F2,F1,F0,EXP)		
30.211, 30.212	DA	Demanda Ativa (KW)	IEEE 32-bit fp (F2,F1,F0,EXP)		
30.213, 30.214	MDS	Máx. Demanda Aparente (KVA)	IEEE 32-bit fp (F2,F1,F0,EXP)		
30.215, 30.216	DS	Demanda Aparente (KVA)	IEEE 32-bit fp (F2,F1,F0,EXP)		


Códigos de Erro.

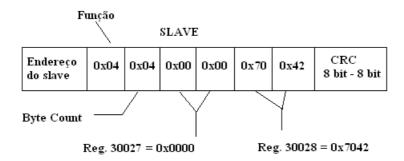
ENDEREÇO	REG.	DESCRIÇÃO	FORMATO		
33.901	Erro	Código de Erro*	Int 16-bit (MSB,LSB)		

^{*} Para maiores detalhes veja os itens 7 e 8.

Exemplo:

Os frames desta função para master e slave são:

(1) O registro inicial para ler é obtido removendo o indicativo (número 3) e subtraindo o resultado por 1. No exemplo, o registro 30027 (decimal) é transmitido como 0x001A (hexadecimal):



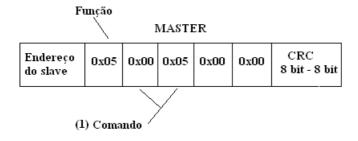
Revisão 1.1 Fevereiro/2019

30027 → 00027 → 00026 → 0x001A hexadecimal.

(2) Total de registros que podem ser lidos.

A resposta do Slave:

O registro byte count é igual ao total de registros a serem lidos vezes 2, pois cada registro possui 2 bytes.

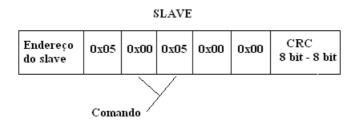

No exemplo acima o master pediu uma leitura dos registros que contém a frequência da fase A (30027 e 30028) e obteve como resposta o valor 0x00007042 (IEEE 32-bit floating point). Convertendo esse valor para decimal temos que a Freqüência medida pelo canal A é 60 Hz.

5. FORCE SINGLE COIL (0x05)

Esta função permite executar os seguintes comandos no MULT-K Série 2:

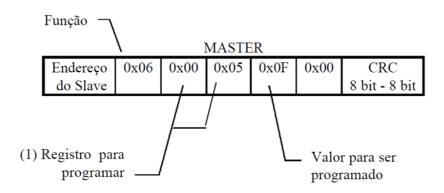
COMANDO	DESCRIÇÃO		
001	Reseta DEMANDA ATIVA		
002	Reseta DEMANDA APARENTE		
003	Reseta MÁXIMA DEMANDA ATIVA		
004	Reseta MÁXIMA DEMANDA APARENTE		
005	Reseta ENERGIA ATIVA POSITIVA		
006	Reinicializa Dispositivo		
007	Sincroniza Cálculo da DEMANDA		
040	Reseta todas as ENERGIAS, DEMANDAS e		
040	contadores das entradas digitais		
050	Reseta ENERGIA REATIVA POSITIVA		
051	Reseta ENERGIA ATIVA NEGATIVA		
052	Reseta ENERGIA REATIVA NEGATIVA		

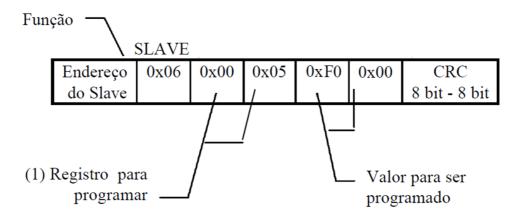
Exemplo: Usar o comando 06 (reinicialização de dispositivo).



(1) Este registro é obtido subtraindo 1 do comando desejado. No exemplo o comando 006 é enviado como 0x0005.

Revisão 1.1 Fevereiro/2019


O Slave retorna uma cópia do frame recebido. Para o exemplo acima:


6. PRESET SINGLE REGISTER (0x06)

Esta função é utilizada para programar um único holding register (registros de configuração do instrumento). Abaixo, exemplo de programação do registro 40006 (TI). Os frames desta função para dispositivos master e slave são:

MASTER

(1) O registro para programar é obtido removendo o indicativo (número 4) e subtraindo o resultado por 1. No exemplo, o registro 40006 (decimal) é transmitido como 0x0005 (hexadecimal): 40006 = 0006 = (0006 - 1) = 0005 = 0x0005 hexadecimal.

Para esta função o slave retorna uma cópia do comando recebido. No exemplo anterior o master programou o registro 40006 com o valor OF 00, equivalente a tempo de integração para cálculo de demanda de 15 minutos.

Revisão 1.1 Fevereiro/2019

7. CÓDIGO DE ERRO

O código de erro permite verificar a integridade do aparelho. Para obter toda a informação de códigos de erro, utilize a função "Read Input Register (0x04)". Os códigos ocupam 1 registro de 16 bits, 33901. A seguir, descrição dos conteúdos dos bytes menos significativos (LSB) e mais significativos (MSB).

<u>LSB</u>

CÓDIGO (decimal)	DESCRIÇÃO		
00	Funcionamento Correto.		
01	Reservado		
02	Reservado		
08	Reservado		
16	Reservado		
128	Reservado		

MSB

CÓDIGO (decimal)	DESCRIÇÃO
00	Reservado
01	Reservado
02	Reservado
08	Proteção de Firmware ativa.

8. READ EXCEPTION STATUS (0x07)

Utilizando esta função é possível consultar códigos de erro para o instrumento de modo direto. As informações retornadas são as mesmas presentes nos bytes menos significativos do registro 33901.

Os frames desta função para o master e o slave são:

MASTER

Endereço de Slave	07	CRC 8 bit - 8 bit
----------------------	----	----------------------

SLAVE

Endereço de Slave	07	Código	CRC 8 bit - 8 bit
----------------------	----	--------	----------------------

9. REPORT SLAVE ID (17)

Esta função permite identificar um modelo de medidor na rede, por meio de um código conhecido. Abaixo frames de mestre e escravo:

MASTER

Slave	0x11	CRC
Address		8 bit - 8 bit

SLAVE

Endereço	0x11	Byte	CÓDIGO	ON /	0x18	XX	CRC
do Slave		Count		OFF			

Revisão 1.1 Fevereiro/2019

Onde:

Byte Count = sempre 0x04

Código = Código do Dispositivo, Exemplo: E2 – Ikron 01-D

ON/OFF = Versão Especial = Para modelo padrão, retorna FF.

"0A" = Versão de Firmware = O código 0A representa versão 1.0 de firmware.

XX = Reservado